Impact of Inspired Oxygen Concentration on Cerebral Blood Flow in Univentricular Circulation

Lauren Imbornoni 1; Sam Haydar 2 M.D.
1 School of Life Sciences, Arizona State University; 2 St. Joseph's Hospital and Medical Center

Objective
To assess the effects of fraction of inspired oxygen (21% FiO2 versus 100% FiO2) on cerebral blood flow in univentricular circulation.

Background
Single ventricle is a fatal congenital heart defect which appears immediately after birth and requires a series of surgical procedures to allow the one functional ventricle to provide adequate blood supply to the lungs (pulmonary circulation) and the rest of the body (systemic circulation). Survival depends on a parallel connection between the two circulations called “pulmonary-to-systemic shunt”.

Methods
Univentricular circulation was established in 10 neonatal piglets. Systemic-to-pulmonary shunt was created by dissecting and sectioning the right subclavian artery and anastomosing it to the main pulmonary artery. The foramen ovale was fenestrated using a nerve hook and Fogarty balloon catheter to establish an atrial septostomy. The tricuspid valve was rendered incompetent by destroying its leaflets and chordae tendineae with a nerve hook. Finally, the main pulmonary artery was occluded.

Univentricular circulation was established in 10 neonatal piglets. Systemic-to-pulmonary shunt was created by dissecting and sectioning the right subclavian artery and anastomosing it to the main pulmonary artery. The foramen ovale was fenestrated using a nerve hook and Fogarty balloon catheter to establish an atrial septostomy. The tricuspid valve was rendered incompetent by destroying its leaflets and chordae tendineae with a nerve hook. Finally, the main pulmonary artery was occluded.

Measurements:
Cardiac output (CO), Pulmonary flow (Qp), and Carotid flow (Qc) were measured using Transonic flow probes. Blood pressures were measured using Millar catheters. Blood gases were measured with arterial and venous blood oximeter and a blood gas analyzer.

Calculated Parameters:
Systemic flow (Qs), Pulmonary/Systemic flow ratio (Qp/Qs), Carotid/Systemic flow ratio (Qc/Qs), and Oxygen extraction (O2ER).

Compared Parameters:
The data collected during “normoxia” (21% FiO2) and “hyperoxia” (100% FiO2).

Results

IncreasingFiO2 from 21% (normoxia) to 100% (hyperoxia):
Increased:
Qp/Qs Ratio (Pulmonary/Systemic Flow Ratio), Pulmonary flow, and O2 Extraction Ratio
Decreased:
Carotid Flow (by 23%), Systemic Flow (by 17%), Qc/Qs Ratio (Carotid/Systemic Flow Ratio)

Conclusion

Is more oxygen better?
IncreasingFiO2 from 21% to 100% in this univentricular model diverted a significant amount of blood flow to the lungs, reducing systemic blood flow and tissue perfusion. The effects were more pronounced on carotid flow than overall systemic flow. Therefore, by reducing carotid blood flow and tissue perfusion, hyperoxia may have adverse effects on cerebral perfusion and neurological function in newborns with univentricular circulation.

Acknowledgements
Thank you to: Dr. Sam Haydar, St. Joseph’s Hospital and Medical Center Laboratory Team, Dr. Jane Mainschein, and Arizona State University’s Center for Biology and Society.

References