CRISPR-Assisted Genetic Engineering
Joseph Flay, Madeline Grade, Daniel Garry, Ryan Muller
Arizona State University

Background: What is CRISPR?
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) are a genomic feature of many bacterial and archaeal species. CRISPR functions as an adaptive immune system, protecting the host from invasion by plasmids and bacteriophages.

Its locus consists of a set of CRISPR-associated (Cas) genes, a leader sequence, and an array. This array consists of repeating elements along with "spacers", which direct the CRISPR machinery to target and destroy a complementary sequence of DNA or RNA in the cell.

A New Platform for Gene Silencing
ASU's 2011 iGEM team developed a project which sought to develop a modular platform for gene manipulation. During the execution of our project we:

- Explored multiple approaches for testing a system for gene silencing
- Expanded our implementation of the BioBrick concept to include using the endogenous genomes of organisms
- Designed a software tool that offers accessibility to others labs who hope to utilize our platform for gene manipulation

Design
We configured our experimentation with CRISPR systems using the following modular design elements:

- **Spacer Selection:** Spacers (~30bp) can be created to selectively target any sequence of DNA or RNA proto-spacers.
- **Proto-spacers** have short nucleotide tags called proto-spacer adjacent motifs (PAMs). These short sequences are recognized by the Cas machinery.

Array Construction:
- **Leader Sequence:** Promoter sequence that proceeds the RSR array
- **Cas Genes:** The Cas genes can be utilized in two ways:
 - Amplify gene and insert into testing plasmid
 - Insert array into strain with functional Cas genes

Endogenous E. Coli Cas Testing
Samples containing the Leader+RSR construct showed significantly increased transformation efficiency, contrary to the expected suppression due to the presence of the array.

L. Innocua: DNA-Targeting
Advantages of this CRISPR system:

- **Compactness:** A single Cas gene (Cas9) is much smaller and more easily amplifiable than those of E. coli or B. halodurans
- **Better Regulation:** A trans-encoded CRISPR RNA (tracrRNA) is required for function and allows for an extra level of regulation
- **More Options:** The proto-spacer adjacent motif (PAM) is smaller than in other CRISPR hosts, increasing the variety of spacers

Future Applications
A cell-free CRISPR system could be used for:
- Verifying successful CRISPR construction and function
- Characterizing spacer integration into the RSR array and model spacer targeting
- Providing a mechanism to study the evolution of CRISPR in a simplified environment

A functioning RNA-targeting CRISPR system could be used to modulate gene expression in a given production pathway

Acknowledgements
- Intern Juan Padilla
- Deans Mark Jacobs and Margaret Nelson
- Dr. William Ditto, Dr. Marco Santello
- Deans Paul Johnson and Jim Collofello
- ASU President Dr. Michael Crow